Chapter 3 — Implementing Classes

Instance Variables
Accessing Instance Variables
Encapsulation

Class Comment
Implementing Constructors
Method Declaration

Implicit Parameter

Implicit Parameters and this

Instance Variables

* Instance variables store the data of an object

The class declaration specifies the instance variables:

' concertCounter = —
public class Counter e -

{

private 1nt value;

}
* An instance variable declaration consists of the following parts:

eqccess specifier (private)
etype of variable (such as int)
ename of variable (such as value)
* Each object of a class has its own set of instance variables

* You should declare all instance variables as private

Accessing Instance Variables

The count method advances the counter value by 1:

public void count ()

{

value = value + 1;

J

The getValue method returns the current value:

public int getValue ()
{

return value;

Private instance variables be accessed by methods of the same class

Encapsulation

Encapsulation is the process of hiding object data and providing methods for
data access

To encapsulate data, declare instance variables as private and declare
public methods that access the variables

Encapsulation allows a programmer to use a class without having to know its
implementation

Information hiding makes it simpler for the implementor of a class to locate
errors and change implementations

Class Comment

 Provide documentation comments for

» every class

e every method

e every parameter
e every return value

* BanlAccount - Firefox

File Edit “iew History Bookmarks Tools Help

<tl - 5 lé‘:] || file jifhome/cay/Biglava/ch03faccount/index.html - E&]

Al Classes BankAccount(double initialBelance) M
HankACcaunt Constructs a bank account with a given balance,

BankAccountTester

Method Summary

void|deposit(double amount)
Deposits money into the bank account.

double|getBalance()
Gets the current balance of the bank account,

void |withdraw(double amount)
Withdraws money from the banle account.

'* [BankAccount - Firefox [_]

File Edit Wiew History Bookmarks Tools Help

9@

All Classes
BankAccount

BankAccouniTester

| 1 file:jifhome/cay/Biglava/ch03faccountfindeax html

Method Detail

deEosit

public void depesitidouble amount)
Deposits money into the bank account.

Parameters:
amount - the amount to deposit

4

Implementing Constructors

Constructors contain instructions to initialize the instance variables of an object:

public BankAccount ()
{

balance = 0;

public BankAccount (double 1nitialBalance)

{

balance = initialBalance;

Method Declaration

Syntax accessSpecifier returnType methodName (parameterType parameterName, . . .)
method body
}
Example
This method does
not return a valve.
public void deposit(double amount) A wutator method wmodifies
{ an instance variable.
These wethods balance = balance + amount,
are part of the }
public interface. This method has

no parameters.

public double getBalance()

{
return balance: _

}

Awn accessor method returns a valve.

Local Variables

* Local and parameter variables belong to a method

* When a method or constructor runs, its local and parameter variables come to life
*When the method or constructor exits, they are removed immediately

A4

*When an object is constructed, its instance variables are created

*The instance variables stay alive until no method uses the object any longer

* InJava, the garbage collector periodically reclaims objects when they are no
longer used

* |nstance variables are initialized to a default value, but you must initialize
local variables

Implicit Parameter

The implicit parameter of a method is the object on which the method is
invoked

public void deposit (double amount)
{

balance = balance + amount;

J

In the call

momsSavings.deposit (500)

The implicit parameter is momsSavings and the explicit parameteris 500

Nhen you refer to an instance variable inside a method, it means the instance
variable of the implicit parameter

Implicit Parameters and this

The this reference denotes the implicit parameter
balance = balance + amount;
actually means

this.balance = this.balance + amount;

When you refer to an instance variable in a method, the compiler automaticall
applies it to the this reference

