
Chapter 3 – Implementing Classes

1. Instance Variables

2. Accessing Instance Variables

3. Encapsulation

4. Class Comment

5. Implementing Constructors

6. Method Declaration

7. Implicit Parameter

8. Implicit Parameters and this



Instance Variables

• Instance variables store the data of an object

The class declaration specifies the instance variables: 

public class Counter

{

private int value;

…

}

• An instance variable declaration consists of the following parts:

•access specifier (private)

•type of variable (such as int)

•name of variable (such as value)

• Each object of a class has its own set of instance variables

• You should declare all instance variables as private



Accessing Instance Variables

The count method advances the counter value by 1:

public void count()

{

value = value + 1;

}

The getValue method returns the current value:

public int getValue()

{

return value;

}

Private instance variables can only be accessed by methods of the same class



Encapsulation

• Encapsulation is the process of hiding object data and providing methods for 
data access

• To encapsulate data, declare instance variables as private and declare 
public methods that access the variables

• Encapsulation allows a programmer to use a class without having to know its 
implementation

• Information hiding makes it simpler for the implementor of a class to locate 
errors and change implementations



Class Comment

• Provide documentation comments for
• every class 

• every method 

• every parameter 
• every return value



Implementing Constructors

Constructors contain instructions to initialize the instance variables of an object: 

public BankAccount() 

{

balance = 0; 

}

public BankAccount(double initialBalance)

{

balance = initialBalance;

}



Method Declaration



Local Variables

• Local and parameter variables belong to a method

• When a method or constructor runs, its local and parameter variables come to life 

•When the method or constructor exits, they are removed immediately 

• Instance variables belongs to an objects, not methods

•When an object is constructed, its instance variables are created 

•The instance variables stay alive until no method uses the object any longer 

• In Java, the garbage collector periodically reclaims objects when they are no 
longer used 

• Instance variables are initialized to a default value, but you must initialize 
local variables 



Implicit Parameter

The implicit parameter of a method is the object on which the method is 
invoked 

public void deposit(double amount) 

{

balance = balance + amount; 

}

In the call

momsSavings.deposit(500)

The implicit parameter is momsSavings and the explicit parameter is 500

When you refer to an instance variable inside a method, it means the instance 
variable of the implicit parameter



Implicit Parameters and this

The this reference denotes the implicit parameter

balance = balance + amount;

actually means

this.balance = this.balance + amount;

When you refer to an instance variable in a method, the compiler automatically 
applies it to the this reference


